
 

CEE.Net, BC Designer and 
UI-Frameworks 

 

 

Conceptional Features 

 
Ver. 1.0 

 
Official Documentation 

 



 

CEE.Net, BC Designer and UI-Frameworks - Ver. 1.0 

Conceptional Features 

04. Sep. 2009 

 

Official Documentation 

 

 

© 2009 Autonomous Province of Bolzano 
Dep. 9 - Department for Information Technology 
9.7 

 

 

Author: 

Zeno Moriggl 

 

Describes the CEE.Net in team with BC Designer and SharpForge 

 



 CEE.Net, BC Designer and UI-Frameworks 3 

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version   

Content 
 

1. Abstract ........................................................................................................4 

2. What is the CEE.Net? .....................................................................................5 

2.1. Features........................................................................................................5 

2.1.1. Transparent Proxy.................................................................................5 

2.1.2. Integrated Security via Kerberos.............................................................6 

2.1.3. Client Data Forwarding ..........................................................................6 

2.1.4. Gateway Functionality............................................................................7 

2.1.5. Autodeployment....................................................................................8 

2.1.6. Lightweight Distributed Infrastructure .....................................................8 

2.1.7. Logical Component Clustering ................................................................8 

2.1.8. Java/.Net Interoperability.......................................................................9 

2.1.9. COM Interoperability .............................................................................9 

2.1.10. Dynamic Endpoint Discovery ................................................................10 

2.1.11. Service Implementation Switching ........................................................10 

2.1.12. Pluggable Base Components ................................................................11 

2.1.13. Contract first.......................................................................................12 

2.1.14. Service Publishing ...............................................................................12 

2.1.15. Service Access Policies and Service Injection..........................................12 

2.1.16. Complex Interface Handling .................................................................13 

2.1.17. Specialized Types Serialization..............................................................14 

2.1.18. Service Preferences .............................................................................15 

3. What Is the BC Designer? .............................................................................16 

4. What Is SharpForge?....................................................................................17 

 

 



 Abstract 4  

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version    

1. Abstract 

This document is about the CEE.Net working in team with the BC Designer and the 

SharpForge Framework. It explains what the CEE.Net is, describes the conceptual features 
it offers and explains how both the BC Designer and the SharpForge framework act as a 

facilitators for perfect intergration with the CEE.Net infrastructure. 

 



 CEE.Net, BC Designer and UI-Frameworks 5 

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version   

2. What is the CEE.Net? 

The CEE.Net is a lightweight infrastructural component whose compound of instances 

represents a ubiquitous base for hosting and accessing bundled services. From a technical 

point of view, all the CEE.Net instances realize a SOA infrastructure which, though profiting 
from and built on leading technologies, on the one hand applies a corset to service 

development, enforcing to be respected a set of architectural rules, and on the other hand 
leverages parallel service development by supporting the contract first approach in service 

design. 

The benefit from introducing rules and enforcing them by a infrastructural component such 
as the CEE.Net is to have the ability to hide them from developers and to move them to 

the infrastructure. Instead of having to verify again and again if the set of architectural 
rules, aimed to guarantee such important concepts as seamless interoperability, security, 

site awareness and so on, has been respected, you can trust your infrastructure to do it 
for you. 

The loop gets closed if considering not only the CEE.Net but also the facilitators (BC 
Designer and BC Generator) and the frameworks that seamlessly connect you to your SOA 

world. 

The following chapter describes the features of the CEE.Net that have been implemented 
in addition to the functionality natively offered by the .Net Framework on which it has 

been built. Each feature explains why it has the right to exist. 

2.1. Features 

 

2.1.1. Transparent Proxy 

The CEE.Net implements a concept of transparent proxy for service clients, hiding from the 
developer if the service is offered by a remote server or by the local machine. From a 

technical point of view, the CEE.Net allows two ways to access a service: either via Web 
Services if the service is offered by a remote computer, or via a dynamically loaded local 

class instance if the service is offered by the local machine. This speeds up local services 
enormously. 

2.1.1.1. Why do we need this? 

This feature brings the developer a seamless SOA experience: he has not to care about 
local or remote services; all he has to do is to request a service. This requires less 

programming skills and lowers costs of software development. 

For the operating staff transparent proxying allows to distribute bundled services on 
different servers without braking functionality of other services or applications and without 

any need of reconfiguring applications. This lowers costs of operating, increases agility and 
contributes to complete decoupling of Development and Operations. 



 CEE.Net 6  

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version    

2.1.2. Integrated Security via Kerberos 

The CEE.Net natively integrates with Kerberos security realms when calling remote 
services, following a configurable pattern for dynamic SPN resolving and supporting 

Kerberos delegation. 

2.1.2.1. Why do we need this? 

No discussion: services have to authenticate the calling user before responding, that’s a 

strong and indispensable security requirement. 

Furthermore, this feature allows seamless integration with the user’s current security 
context as long as he has been authenticated by a KDC (this is, in our case, Active 

Directory authentication) and brings to the user a complete SSO experience, saving him 
from remembering a lot of passwords which potentially end up on post-its or other 

improper support media. 

The feature is implemented unrestrictedly relying on the open WSS standards (OASIS) and 

guarantees interoperability with Java-based services, independent from whether they are 
running on a Windows, a Unix or a Linux system. This is important for not restricting the 

SOA infrastructure to a single platform, an important criterion for at least theoretical 
vendor independence. 

All what we have said above can be accomplished by simply using the core functionality of 

the .Net framework. So what’s the advantage of the feature? 

Obviously, the feature is built on the core functionality already present in the .Net 

framework. What the feature does is to move the implementation away from where it 
normally happens: the service client or the service implementation. It’s no longer up to the 

developer of the service or the developer of the client to care about requesting and 
integrating the Kerberos token and configuring the WS policy for having matching what 

the service expects to get and what the client sends. This work is done exclusively by the 
CEE.Net, hiding it completely from the developer, by introducing a dynamic SPN resolving 

pattern for requesting the tokens (otherwise we would have to control that all developers 
respect the rules for SPN naming for having all the stuff working). 

The feature is described in detail by the document SOA Infrastructure Security.pdf. 

This, once again, requires less programming skills and lowers costs of software 
development. 

2.1.3. Client Data Forwarding 

The CEE.Net can automatically propagate infrastructural data about the client to a remote 

service. This includes two properties which are protected by the CEE.Net in a special way 
and represent the user’s identity: 

• The name of the user calling the service from the client 

• The name of the computer from where the service is called 

Furthermore, the CEE.Net can propagate a configurable set of additional properties which 

are controlled by the single application calling the remote service and not by the CEE.Net 

itself. This could, for example, be the name of the office the user is currently working for. 

2.1.3.1. Why do we need this? 

This feature is important for two reasons: 



 CEE.Net, BC Designer and UI-Frameworks 7 

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version   

First, in our environment it is crucial to know on the one hand who is working where in 
order to control site aware access to redundantly deployed resources (such as replicated 

databases). Basing on the user’s physical location we have to find out which resources (file 
shares, printers, databases and so on) to access. On the other hand, we must know whom 
the user is working for, since users can belong to multiple offices and can play different 
roles for different offices. Along wit the user’s identity, this is a prerequisite for controlling 
access to the resources that have earlier been found to be physically available at his 
current position. 

Second, we have to propagate the user’s identity, and may be additional client data, 
between service hops and – more important – between different security contexts in order 

to provide the destination service with the necessary data for guaranteeing controlled 
access to his resources, basing on the user’s identity. This means that if a client calls a 

remote service which on his part, in order to carry out what he has been requested to do, 
must call another remote service, the identity and other fundamental client data of the 

original caller must be propagated by the first remote service to the second one (which on 
his part will propagate it to the third one and so on). 

One could object that standard approaches to fulfill these requirements already did exist in 
the .Net framework and had not to be implemented once again. Indeed, Kerberos 

delegation would do great part of the job, but: 

• Letting a Web Server impersonate a user’s identity requires the user account to 

have elevated privileges and possibly access to the resources that the service 
must deal with; 

• Kerberos delegation ends where the Kerberos realm ends and could therefore be 

used in the own Intranet; but how should identities be forwarded from one 

security context to another? 

• The Kerberos token does not contain additional information such as for whom the 

user is currently working. 

When searching for an alternative way for transmitting the original user’s identity and 

other fundamental data one could suggest to put them in all methods of all services that 
are going to be created. Moving this feature to the CEE infrastructure saves us from the 

duty to control if this rule (which would have to be much more precise) has been 
respected, and it saves the developer from the obligation to not forget about its correct 

and – as we are talking about identities – reliable implementation. 

The protected properties of the feature (username and computername) are described in 
detail by the document SOA Infrastructure Security.pdf. 

2.1.4. Gateway Functionality 

The CEE.Net has the ability to dynamically understand if a service that has been requested 

is inside or outside his security realm. Dependently from what the CEE.Net has found out, 
he decides how to authenticate against the remote service: if he finds that the service is 

an intranet service, a Kerberos token is integrated in the SOAP header, as described above 
(with all the advantages of SSO). If he finds out that the service is an external one, the 

CEE.Net will create a Username token with username and password, trying to request 

them from a gateway service he has been told to use, and if no one are returned, he will 
ask the user to provide them interactively. 

2.1.4.1. Why do we need this? 

This feature is needed for basic message based intra-realm authentication without having 

to rely on superior certification authorities. The feature helps to realize a trust relationship 
between different organizations which authenticate against each other and trust each 



 CEE.Net 8  

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version    

other to authenticate the own users in a correct way. Identities are forwarded from one 

organization to another by the feature Client Data Forwarding described above. 

This feature is described in detail by the document SOA Infrastructure Security.pdf. 

2.1.5. Autodeployment 

The CEE.Net has the ability to automatically synchronize its components folder (this is the 

container hosting the artifacts of the Business Components) with one or more update 
folders. New or updated artifacts are deployed without stopping the CEE.Net (components 

currently in use by clients are marked and then disposed as soon as they get released by 
the consumer; contemporaneously they are substituted with the new release). 

2.1.5.1. Why do we need this? 

We need this feature, which is aimed to facilitate daily operations, for guaranteeing an 

agile method for deploying new or updated Business Components. 

2.1.6. Lightweight Distributed Infrastructure 

The CEE.Net installed in the production environment is currently about 1,5 MB of size and 
available in two versions: the Client Edition which is lacking of capabilities for service 

publishing for remote access, and the Server Edition which allows to publish the services of 
locally hosted Business Components to the rest of the world. A core functionality of all 

CEE.Net editions is site awareness or, in other words, the ability to access services nearby 
depending on a underlying physical network partitioning. So if services are deployed 

redundantly, the closest instance can be found dynamically. 

These characteristics make the CEE.Net suitable for being installed on all computers and if 

needed on servers without a great performance and resource impact. 

2.1.6.1. Why do we need this? 

Except the core administration of the Autonomous Province of Bolzano, which is 
concentrated in a quite well connected area at Bolzano, a lot of peripheral branch offices 

exist, which are mainly thought to service the citizen where he lives. In the same way as 
services such as teaching, road network maintenance, district survey of any type or other 

things that usefully have to happen in a redundant way, near the people, are offered 
nowadays in single districts, an electronic service equivalent may be needed. This is 

especially the case when the necessary connectivity for an acceptable user experience 

along with an acceptable reliability cannot be guaranteed. Therefore the SOA 
infrastructure must support redundantly deployed Business Components which all offer the 

same services but limit them to their service area. 

In distributed environments a lightweight, easy to deploy and easy to manage 
infrastructure is crucial. If the components to install for having the SOA running are too 

heavy, distribution will rarely happen with all the negative impacts such as loss of 
performance and poor user experience. 

2.1.7. Logical Component Clustering 

Logical component clustering of the CEE.Net allows to subdivide a SOA environment into 

logical subparts offering to the world a subset of the organization’s Business Components. 
Different clusters can contain the same Business Components, though they may differ in 

version or behavior. 

While the service broker (this is the part of the CEE.Net that connects an application 

dynamically to a service) can access multiple, prioritized logical clusters 



 CEE.Net, BC Designer and UI-Frameworks 9 

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version   

contemporaneously, a single CEE.Net Server instance can publish its services to exactly 
one logical cluster only. 

All editions of the CEE.Net can implicitly create logical clusters which match the well 
connected network segment they are running in (site), or they can implicitly subdivide the 

site into more than one logical clusters. 

2.1.7.1. Why do we need this? 

We need logical component clustering for the following reasons: 

• To have running multiple versions of a Business Component in a given 

environment (such as the production environment); this can be extremely useful 
in migration scenarios when upgrading to new versions of a Business Component 

• To speed up dynamic service lookup in distributed environments, if tightly 
coupling logical component clustering with physical network segmentation (which 

is an implicit function of the CEE.Net); this saves the service broker from doing a 

lot of work when he has to filter out the nearest service from a list of hundreds of 
servers all offering a requested service. 

2.1.8. Java/.Net Interoperability 

The CEE.Net enhances interoperability between Java Web Services and .Net Web Services 
which is natively guaranteed by the WS Standards. What the CEE.Net does is handling of 

nullable data types in .Net service interfaces: the incompatibility between the Java and the 
.Net platform is given by the fact that some data types such as Date or DateTime natively 

are primitive and therefore not nullable in the one platform, while they are nullable in the 

other. So while one of the partners can deal with (send or receive) nulls for class instances 
of the affected types, the other can’t and will end up in runtime errors. The CEE.Net allows 

to use the .Net’s generics pattern in order to declare explicitly in the service interface 
those datatypes which natively are not nullable, as nullable. In order to have the stuff 

running, the service broker has to modify at runtime the web service proxy which has been 
created dynamically from the service’s WSDL: the WSDL does not tell anything about 

nullable or not nullable data types, and the class inferred from the web service description 
would therefore not compile if forced to implement the service interface whose data types 

have been enriched with the nullable attribute. The service broker modifies the proxy 
generated from the WSDL in order to have it matching the service interface in the common 

assembly. 

 

Note 

This feature conflicts with the feature of COM Interoperability! 

 

2.1.8.1. Why do we need this? 

We need this feature for seamless integration between services written on the Java 
platform and such written in .Net. Without this feature Java developers would have for 

example to know what .Net’s MinDate or MaxDate are, and we would have to convey on a 

rule that says that a .Net’s MinDate means the absence of information instead of being a 
real date. 

2.1.9. COM Interoperability 

All editions of the CEE.Net automatically register to COM both the interface of the CEE’s 
service broker and all the interfaces of services belonging to locally deployed Business 



 CEE.Net 10  

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version    

Components which have been marked as COM visible. If you design a Business Component 

with the Business Component Designer, all service interfaces of enterprise tier services are 

automatically declared to be COM visible. The CEE.Net handles also the lifecycle of his 
COM registered components: if an already registered component gets its interfaces 

updated, a COM re-registration will take place, and if a Business Component is removed 
from the CEE.Net, its COM registration will be undone. 

 

Note 

This feature conflicts with the feature of Java/.Net Interoperability! 

2.1.9.1. Why do we need this? 

COM registration of the CE.Net itself and of the service interfaces he offers opens the SOA 
world to all applications which can deal with COM, including all the infrastructural features 

that the CEE.Net brings to developers and administrators. Although one could force 
vendors to develop new solutions on either the .Net or the Java platform, existing 

commercial products nowadays are still built on other platforms, and especially if they are 
exceeding a critical size, rewriting an alternative will no longer be convenient. With COM 

interoperability such applications can participate in SOA, although in a unilateral way only: 
they can only consume services without offering anything to the rest of the world. 

2.1.10. Dynamic Endpoint Discovery 

All CEE.Net editions can look up dynamically at runtime all the possible endpoints of a 

given service interface that is going to be requested, making use of one or more pluggable 
service registry connectors. The service registry can be of any type, e.g. LDAP, UDDI, a 

relational database or whatever (obviously, for a specific service registry a fitting registry 
connector has to be deployed to the CEE.Net for having it attached dynamically at 

runtime). The CEE.Net supports multiple registries and tries them all at runtime till one 
returns an endpoint for what he is searching for. 

The CEE.Net server edition feeds exactly one service registry by the means of the 
appropriate, pluggable, registry connector, publishing the endpoints of those services that 

are marked as remotable and which have successfully been delivered to the Web Server. 

2.1.10.1. Why do we need this? 

Dynamic endpoint discovery and publishing is vital for severing ones ties with physical 
deployment. This feature brings to administrators the agility they need for an effective 

resource management or in migration scenarios. They do not have to deal with tons of 
server- and client-side configuration files when moving a component from one server to 

another for performance or maintenance reasons, or when distributing a single Business 
Component to multiple machines. This is a crucial feature for decoupling an autonomous 

operations staff from development, as intended by ITIL. 

2.1.11. Service Implementation Switching 

The CEE.Net supports interface inheritance when coupling interfaces with classes that 
implement them. This allows a client to request different implementations for one single 

service interface. 

2.1.11.1. Why do we need this? 

This feature has been introduced for two reasons: 

• In outsourcing scenarios, domain specific services have to be simulated by 

alternative, domain independent service implementations (such as services that 



 CEE.Net, BC Designer and UI-Frameworks 11 

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version   

provide the roles of the currently logged on user, or the offices he belongs to, or 
a service that encrypts a configuration file with domain specific keys …). This 

feature saves us from recompiling the solution for having it to stick to the domain 
specific services instead of the simulating ones (and the alternative to name the 

simulating services in the same way as the domain specific ones is quite 
dangerous since they can’t coexist). 

• In migration scenarios, this feature allows a temporary coexistence of two or 

more concurrent providers for one single service. Let’s say tomorrow you decide 
to no longer want to use Active Directory as your attribute provider. You will have 

thousands of client instances stuck to the service that currently connects you to 
Active Directory. With this feature you are not forced to guarantee that all of 

them can immediately switch to the new attribute provider because you have no 
other possibility than to substitute the existing service implementation with the 

new one. This feature will help you especially in distributed environments where 
changes propagate slowly, due to the replication schedules. 

2.1.12. Pluggable Base Components 

The CEE.Net introduces the concept of so called base services. Here we are talking about 

Business Components that offer services that are vital either for the CEE.Net itself or for 
frameworks in order to accomplish their infrastructural tasks such as: 

• Physical network segmentation in order to operate site aware 

• Role based server discovery for finding registry servers dynamically 

• Kerberos Information services 

• Cryptographic tasks 

• Providing of credentials for external services (gateway services) 

• Information about the user’s environment (who he is, which offices he is 

belonging to, whom he is currently working for, where he is, which resources he 

has near him, which roles does he play …) 

The Business Components that offer this functionality are regular Business Components 
that can be called also by any other client whenever they want; what qualifies them for 

Base Components is that they are used also by the CEE.Net itself and by UI-frameworks. 

An important characteristic of Base Components is that they are domain specific. Network 

segmentation for example will be differ from domain to domain not only at a logical level, 
but also in implementation: the system describing the network may be Sites and Services 

of Active Directory or anything else. The same can be said for cryptographic services, 
attribute providers, server roles, credential management and so on. 

If Base Components are missing, the CEE.Net will lose the features relying on the missing 

services. 

In order to have the ability to simulate ones environment in outsourcing scenarios, the 

CEE.Net comes natively with a limited set of Base Components suitable for simulating what 
in the production system will then be substituted with a domain specific Base Component. 

This includes network segmentation, information about the user’s environment and 
credentials for external services. 

This feature is built on the feature of Service Implementation Switching. 



 CEE.Net 12  

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version    

2.1.12.1. Why do we need this? 

We need this feature in order to 

• attach dynamically to any of our environments for site awareness, access control, 

authentication and so on (either production or test) without having to recompile 

• simulate our environment in outsourcing scenarios in order to allow a vendor to 

develop its solution in its own company 

• have the ability to donate the CEE.Net to partners without revealing any security 

relevant details of our environment, and to give them the possibility to profit from 
the CEE.Net’s features by sticking to their own environment, saving them from 

doing a lot of configuration. 

2.1.13. Contract first 

The CEE.Net facilitates a contract first approach (along with the Business Component 
Designer) by attaching at runtime a so called common assembly to the Web Service proxy 

dynamically created from its WSDL file. This common assembly is created by the Business 
Component designer when the interface of a Business Component is designed and can 

immediately be given away to the developer who intends to consume the service. It 
provides him with all he needs to access the service programmatically, although the 

service may not even have an implementation yet. At runtime, the CEE.Net attaches to the 
service by reading its WSDL and creating a proxy dynamically at runtime, and coupling at 

the end the latter with the common assembly which has been used by the client to access 
the service long before the WSDL did exist. 

2.1.13.1. Why do we need this? 

We need this feature for parallel development of a service and its consumer: once 
designed the service contract, both the service developer and the client developer can 

start with their work. 

2.1.14. Service Publishing 

The CEE.Net can automatically publish all or part of the services of locally deployed 

Business Components to its local IIS instance for having them accessible from remote 

machines. This feature includes the features 2.1.15, 2.1.16 and 2.1.17. 

2.1.14.1. Why do we need this? 

This feature saves the developer from having to deal with method decorating and XML 
serialization tasks. He does not have to know anything at all about Web Services. This 

requires less programming skills and lowers costs of software development. 

2.1.15. Service Access Policies and Service Injection 

If a service is offered via Web Service, the CEE.Net Server Edition creates a little wrapper 
which internally calls the locally deployed service destined to be offered to remote 

machines. This wrapper is decorated with all the attributes needed to having it published 
automatically by IIS, and furthermore it can do some infrastructural access control when a 

remote client is calling the service. This includes to: 

• check if a valid security token has been provided via the SOAP header 

• check to whom the security token has been issued, if dealing with a Kerberos 
token 



 CEE.Net, BC Designer and UI-Frameworks 13 

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version   

• check if the client has tried to pretend to be someone else than shown by the 

security token, although not allowed to do so 

• inject the internal service instance with the authentication and client data 

propagated via the SOAP header 

2.1.15.1. Why do we need this? 

This feature is needed to improve security: although the Web Server can (and should) be 
told to check if the SOAP header contains a security token, the service wrappers created 

by the CEE.Net Server Edition do not know if the Web Server really did carry out this task 

(due to erroneous IIS configuration for example). In order to keep under control security, 
the wrapper can do the check once again. 

Furthermore, this feature is essential for allowing identity- or role -based access control at 

the inside of the local service instance called by the wrapper. This access control is no 
longer infrastructural, but explicitly implemented in the service itself. Without this feature 

the identity of both the originally calling user and the authenticating user would be 
unknown to the internal service instance. Actually, this is true also for the user’s position 

and additional client data (such as for whom he is currently working). All these attributes 
may be needed for an advanced access control, since a user may have access to resources 

owing to his position, or he may play different roles for different employers, and the same 
role may imply different permissions for different employers. 

In addition, this feature is a prerequisite for forwarding of client data between service hops 
since it allows to check if the authenticating user is allowed to forward other identities than 

himself. Without this feature, if a remote service has to call yet another remote service, 
the latter would be deprived of the ability to control access to its resources basing on the 

user’s data. The aspect of service hopping is described in detail in the SOA Infrastructure 
Security.pdf document. 

2.1.16. Complex Interface Handling 

The Web Service standard lacks a lot of features that OO-developers in the meantime have 

become fond of. The intent to realize a transparent proxy in a SOA environment implies to 
adhere to the standards used for remote service calls when designing a service interface, 

and as a consequence to do without all the features of the object oriented approach that 
are in contrast to these standards. This includes: 

• Interface data types exchanged between methods of different classes 

• Method overloads 

• Bidirectional object dependency in hierarchical trees (objects pointing to their 

parents) 

• Exchange of objects not fully decomposable into primitive data types 

The WS publisher of the CEE.Net Server Edition on the one hand and the service broker on 

the other can hide some of these limitations from the developer, by dynamically handling 
method overloads (expanding them at server side to multiple methods and collapsing them 

client side to a method overloaded multiple times); or by substituting at server side 
interface types in method parameters with the data types implementing them, and 

reverting to interfaces at the client side after deserialization; or by cutting dynamically 
references to parent objects in method parameters in order to allow XML serialization. 

2.1.16.1. Why do we need this? 

We need this feature in order to improve the developer experience, but we could also do 
without it since in most cases we pay for it with loss of performance. 



 CEE.Net 14  

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version    

The feature is more important in so called abstract interfaces when decoupling from a 

concrete service implementation (see feature 2.1.16) and for COM interoperability since 

COM needs a interface for its data types (see feature 2.1.9). 

2.1.17. Specialized Types Serialization 
The WS-publisher of the CEE.Net Server Edition automatically includes specialized data 

types in XML serialization even when they do not explicitly appear in any of the methods of 
a Business Component’s services. Specialized data types means such inheriting directly or 

indirectly from any data type that is either used as a method parameter or a return value 
of a service method. If the WS-publisher would not interfere when creating the service 

wrapper, such data types would not be serializable and could not be used in remote 

service calls. 

2.1.17.1. Why do we need this? 

We need this feature in order to build effective service interfaces relying on type 
specialization rather than on flat, flag- and property overloaded objects, nevertheless 

without inflating unnecessarily the numbers of methods. Let’s say you have a service that 
does all the bureaucratic stuff for marrying two people, and assume the procedure differs 

depending on their provenience, may be requiring other documents for foreigners. In this 
case one could think of the following alternatives: 

Alternative 1 

- a method MarryWithForeigner(Person person, Foreigner foreigner); 

- a method Marry(Person person, Person person); 

- a method Marry(Foreigner foreigner, Foreigner foreigner); 

Alternative 2 

- A method Marry(Person person, Person person); 

with inflation of the Person data type, decorating it with all the properties 
needed for describing a foreigner which will not be used in most cases 

Alternatice 3 

- A method Marry(Person person, Person person); 

which accepts both a Person object and a Foreigner object as long as 
inheriting from a Person. 

 

The advantages of alternative 3 are quite obvious:  

While alternative 1 every time when a new person type has going to be supported adds a 
new method to the service – and last but not least – one for each combination of person 

types when couples (or even worse, n-tuples) of person interact, alternative 3 can deal 
with one single method. 

If we take a look at alternative 2, we have an analogous situation: even though we have 

not to increase the number of the methods, we have to inflate the person data type. This 

alternative is even worse than the first one for two reasons: first, if you were not able to 
think just from the beginning of all the possible person types you will have to deal with, 

you will run in changes that will break backward compatibility of the service interface (or 
you end up with adding yet another method) by breaking the service contract. Second, 

you will have to explain which properties of the Person object are important and which to 



 CEE.Net, BC Designer and UI-Frameworks 15 

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version   

ignore under which circumstances. Since there will be a set of properties specific to a 
specific person type, some properties will always be null. To deduce from the object’s 

properties of which type a person is can be a defying task, especially if you have to 
understand which properties are absolutely needed for describing a person type 

completely. 

With alternative 3 we have the chance to build much more stable service interfaces, 

subject to much less changes, and this is key to success in SOA. 

2.1.18. Service Preferences 

The CEE.Net’s service broker allows a service consumer to specify some preferences such 

as if to prefer local services or remote ones, or if to connect to remote services only when 

they are in the client’s side, or if to request services only if published to a specific service 
registry. 

2.1.18.1. Why do we need this? 

This feature is important for giving the analysts the possibility to build different scenarios 

when dealing with offline capabilities of applications or different deployment scenarios. 



 BC Designer 16  

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version    

3. What Is the BC Designer? 

The BC Designer is a graphical tool for designing a Business Component. Along with its 

code generator it allows rapid BC development and guarantees compatibility with the 

CEE.Net’s development patterns. 

The BC Designer allows to describe the bundle of service interfaces offered by a Business 
Component and stores this description in an XML format compatible with the one used by 

its Java equivalent (which is realized as an Eclipse plug in). By agreeing to share a 
common description languages, independently from which platform specific designer has 

been used to describe a Business Component, each platform can pick up such a 
description in order to produce all the stuff needed for immediately docking to the 

component’s services (this is, the service interfaces itself and all the classes exchanged in 
service calls). The .Net Generator will obviously produce a .Net assembly containing the 

service interfaces and the data type classes, while the Eclipse plug in will produce a jar file. 
On both platforms, the produced outputs are ready for use in software projects and 

constitute an essential prerequisite for the contract first approach. This is what the BC 

Designer’s code generator produces for the service consumers. 

In addition to the service interfaces and the data types involved in method calls (compiled 
to a single assembly which will be referenced by whoever wants to access the Business 

Component), the BC Designer’s code generator produces an “empty” service 
implementation, consisting of as many Visual Studio projects as tiers have been designed 

within the Business Component. Each project is complete of all classes and methods 
needed for implementing the component’s services, and each project will compile 

immediately after its generation. All the developer has to do is to implement the still empty 
methods of the single services. Having done this, the output files are ready for being 

deployed to a CEE.Net. This is what the BC Designer’s code generator does for who 
implements the service (instead of using it). 



 CEE.Net, BC Designer and UI-Frameworks 17 

CEE.Net, BC Designer and UI-Frameworks Revision:  295 

Version 1.0 Last saved:  08.10.2009 08:26 

Release Version   

4. What Is SharpForge? 

SharpForge is a UI framework which completes the trio of supportive tools for rapid 
application development. From its large feature list, the following are infrastructural and go 

hand in hand with or are influenced by the SAO approach: 

• Seamless service access by the means of an integrated service handler: 

Every application basing on the SharpForge framework automatically connects to 
the local CEE.Net (which is a prerequisite for SharpForge). All SharpForge pages 

can request services through the framework’s service handler without the need to 

directly bind to the CEE.Net. In addition, the framework handles service broker 
instances saving the developer from dealing with performance issues deriving 

from inconvenient implementation patterns. 

• Native integration with the user’s environment and cryptography: Every 

SharpForge application supports dynamic resource discovery (such as database 
servers) and identifies key user data (such as his offices or roles) by binding to 

predefined abstract service interfaces offered by the underlying CEE.Net. Due to 
the fact that the service interfaces are abstract, the application can easily switch 

between service implementations and has therefore the ability to dock 
dynamically to different environments. In this way any SharpForge application 

operates site aware (basing on network segmentation specific to the environment 
where it is running), can cipher its configuration files with organization specific 

algorithms and allows role based access control basing on organization specific 
authentication systems. 

• Task- and process driven approach: SharpForge is conceptually close to SOA 
as it thinks in tasks and processes: it rather executes operations (calls methods) 

than operating on data tables. It is focusing on navigation between steps as 

elementary building blocks of tasks. 

 


