Allegato C Architettura del sistema tecnologico

Indice dei contenuti

Glo	ssar	io e de	finizioni	2
,	Attor	ri del tr	asporto pubblico	2
ı	Rete	di tras	sporto	2
(Serv	izio di	trasporto	3
1 lr	ntroc	duzione)	4
2 A	rchi	tettura	IT ad alto livello per il TPL	4
2	2.1	Arch	itettura funzionale	5
2	2.2	Arch	itettura a livello di interfacce dati	8
	2	.2.1	Interfacce di riferimento sul medio periodo	8
	2	.2.2	Interfacce transitorie per il breve periodo	12
2	2.3	Arch	itettura di bordo	15
	2	.3.1	Architettura per il medio e lungo periodo	15
	2	.3.2	Architettura per il breve periodo	17
Bibl	liogr	afia		18
Ind	ice (delle F	igure	
Figu	ura 1	1: Vista	funzionale dell'architettura di sistema.	5
Figu	ura 2	2: Arch	itettura di sistema con vista rispetto ai protocolli di interscambio dati	8
Figu	ura 3	3: Arch	itettura di sistema con vista rispetto ai protocolli di interscambio dati (fase di migrazione)	12
Figu	ura 4	4: Arch	itettura di bordo per il medio / lungo periodo	15
Figu	ura 5	5: Arch	itettura di bordo per il breve periodo	17
Ind	ice (delle T	abelle	
Tab	ella	1: Des	crizione funzionale delle componenti dell'architettura	8
Tab	ella	2: Des	crizione delle interfacce usate nell'architettura di sistema	12
Tab	ella	3: Des	crizione delle interfacce usate nell'architettura di sistema (fase di migrazione)	15
Tab	ella	4: Des	crizione funzionale delle componenti di bordo veicolo	17

Glossario e definizioni

I termini tecnici utilizzati in questo documento seguono il significato delle definizioni introdotte nei principali standard europei di riferimento. In particolare, il principale standard considerato è lo standard Transmodel [1], che ha definito il modello dati di riferimento per il trasporto pubblico. Ciascun termine riporta la traduzione corrispondente in lingua tedesca ed inglese. I termini tedeschi sono presi dallo standard VDV-462 [2] che implementa sul territorio tedesco il protocollo europeo NeTEx [3] - [4]

Attori del trasporto pubblico

Passeggeri (in inglese: passengers; in tedesco: Fahrgäste): rappresentano la domanda di trasporto che si vuole soddisfare.

Autorità Pubbliche (in inglese: public authorities; in tedesco: Öffentliche Verwaltung): organizzazioni di diritto pubblico che possono essere organizzate in diverse forme (Comuni, società in-house, etc.), sono responsabili dell'intera organizzazione e gestione di un sistema di trasporto pubblico. In Provincia di Bolzano, le competenze tra le autorità pubbliche sono distribuite come definite dalla Legge Provinciale n.15 del 23.11.2015. La Provincia Autonoma di Bolzano è denominata anche **ente affidante**.

Operatore di trasporto pubblico (in inglese: public transport operator; in tedesco: Verkehrsbetreib / Verkehrsunternehmen): attore incaricato di fornire un servizio di TPL in virtù di un contratto di servizio firmato con un'autorità pubblica.

Fornitori di sistema (in inglese: system suppliers; in tedesco: Systemlieferant): attore che fornisce dispositivi hardware e/o piattaforme ed applicazioni software tali da facilitare l'erogazione dei servizi di TPL.

Rete di trasporto

Rete (in ingliese: network; in tedesco: Liniennetz): è un gruppo di linee caratterizzato da un nome con il quale esso è conosciuto al pubblico.

Linea (in inglese: line; in tedesco: Linie): un gruppo di percorsi che sono generalmente conosciuti al pubblico con un nome e/o un numero comune.

Percorso (in inglese: route; in tedesco: Linienfahrweg): è una lista ordinata di punti georeferenziati che definiscono un cammino univoco attraverso la rete di trasporto su gomma (o su ferro). Un percorso può passare attraverso lo stesso punto più di una volta.

Arco / **collegamento** (in inglese: link; in tedesco: Teilstrecke): oggetto spaziale orientato di dimensione 1 che descrive la connessione tra due punti.

Punto di fermata (in inglese: scheduled stop point; in tedesco: Haltepunkt): punto nel quale i passeggeri possono salire o scendere dai veicoli.

Fermata (in inglese: stop place; in tedesco: Haltestelle): un luogo formato da uno o più zone in cui i veicoli possono fermarsi ed i passeggeri possono salire o scendere dai veicoli. Una fermata è caratterizzata tipicamente da uno o più nomi conosciuti al pubblico.

Area di fermata (in inglese: stop place component; in tedesco: Haltestellenbereich): parte di una fermata, è introdotta al fine di modellare le diverse parti che caratterizzano una fermata e i collegamenti pedonali da un'area all'altra. Diverse tipologie di aree di fermata esistono:

• **Banchina** (*in inglese: quay; in tedesco: Steig*): un'area come una piattaforma da cui i passeggeri hanno accesso ai mezzi di TPL. Ad una banchina possono essere associati più punti di fermata.

- Entrata (in inglese: entrance; in tedesco: Eingang): un'entrata o uscita fisica ad una fermata. Può essere associata ad una porta, una barriera o a qualsiasi altro punto riconoscibile di accesso.
- Spazio di accesso (in inglese: access space; in tedesco: Eingangshalle): un'area accessibile ai passeggeri all'interno di una fermata come ad esempio un atrio, una biglietteria o un'area destinata ai controlli di sicurezza, che però non fornisce un accesso diretto ai veicoli.
- **Zona di parcheggio** (*in inglese: parking; in tedesco: Parkplatz*): zona designata per la sosta di veicoli quali auto, motocicli e biciclette.

Zona tariffaria (in inglese: tariff zone; in tedesco: Tarifzone): un'area usata per la caratterizzazione di un sistema tariffario zonale, basato su una logica a matrice o sull'effettivo attraversamento di tali zone, come quello in uso in Alto Adige.

Luogo di partenza / **destinazione** (in inglese: sites; in tedesco: Abfahrts- / Ankunftsort): località nota rispetto alla quale i passeggeri possono fornire un'indicazione di origine o destinazione di un viaggio.

Servizio di trasporto

Punto di riferimento per i tempi di passaggio (in inglese: timing point; in tedesco: Fahrzeit-Referenzpunkt): un punto di fermata a cui vengono associate delle tempistiche di transito da parte dei mezzi di trasporto pubblico.

Tipo di percorrenza (in inglese: journey pattern; in tedesco: Fahrzeitart): è una lista ordinata di punti di fermata e punti di riferimento per i tempi di passaggio relativi ad un certo percorso, che descrive la modalità attesa di erogazione del servizio da parte dei veicoli di trasporto pubblico. Con i tipi di percorrenza è possibile ad esempio tenere in considerazione le diverse condizioni di traffico in cui le corse vengono eseguite nell'arco della giornata.

Corsa (in inglese: journey; in German: Fahrt): è il movimento pianificato di un mezzo di trasporto pubblico in una certa tipologia di giornata su un percorso specificato.

Orario previsto di passaggio (in inglese: timetabled passing time; in tedesco: geplante Fahrzeit): tempo pianificato di transito di un mezzo di trasporto pubblico ad un certo punto di fermata rispetto ad una certa corsa pianificata per una certa tipologia di giornata.

Coincidenza (in inglese: interchange; in tedesco: Anschluß): è la possibilità programmata di trasferimento per i passeggeri tra due corse in corrispondenza di uno stesso punto di fermata o di punti di fermata diversi.

Orario programmato (in inglese: timetable frame; in tedesco: Fahrplan): un insieme organizzato di corse rispetto al quale sono applicate le medesime condizioni di validità.

Piano di circolazione (*in inglese: block; in tedesco: Fahrtumlauf*): è il piano di lavoro di un veicolo di trasporto pubblico dal momento in cui lascia il luogo in cui è parcheggiato al momento in cui ritorna in una zona di sosta.

Tipologia di giornata (*in inglese: day type; in tedesco Tages-Typ*): è una giornata tipo caratterizzata da una o più proprietà che determinano le modalità di svolgimento del servizio di TPL. Esempi: giorno feriale o festivo.

Condizioni di validità (in inglese: validity conditions; in tedesco Gültigkeitsbedingungen): set di condizioni che descrivono se un certo servizio viene realizzato in un certo giorno oppure no (es. ad es. servizio realizzato solo dal 31.12 al 3.4).

1 Introduzione

Le specifiche contenute nel presente allegato tecnico sono state definite nell'ambito del progetto denominato "Bingo" (*Broad INformation Goes Online*), finanziato dal Fondo Europeo di Sviluppo Regionale (FESR). Il progetto è realizzato da Strutture Trasporto Alto Adige (STA) in stretta collaborazione con la Ripartizione Mobilità della Provincia Autonoma di Bolzano, e si è posto come obiettivo quello di progettare e realizzare una nuova architettura IT per la gestione del trasporto pubblico locale.

2 Architettura IT ad alto livello per il TPL

In questo capitolo la nuova architettura IT ad alto livello per il TPL viene illustrata al fine di avere una prima introduzione sulle modalità ad alto livello con cui i servizi di TPL in Alto Adige saranno gestiti da un punto di vista informatico.

Tale introduzione è organizzata su diverse "viste", che presentano l'architettura attraverso diversi livelli di rappresentazione:

- **vista "funzionale"**, che presenta l'architettura da un punto di vista della tipologia di dati che vengono scambiati tra i vari attori del sistema e le componenti da essi controllati;
- **vista** "**protocolli**", che mette in evidenza quali protocolli verranno utilizzati a regime per lo scambio automatico dei dati tra i vari componenti di sistema.

Per quello che riguarda la vista "protocolli", è inclusa anche una vista aggiuntiva che presenta i **protocolli aggiuntivi** che potranno essere utilizzati in una **prima fase di implementazione**. Questa scelta è stata effettuata essenzialmente per due motivi:

- permettere di ridurre al minimo le tempistiche necessarie per l'implementazione dell'architettura del sistema, sfruttando prodotti e soluzioni ampiamente disponibili sul mercato;
- attendere che gli standard proposti raggiungano una propria maturità, sia a livello di release da parte
 del comitato europeo di normazione CEN che ne cura lo sviluppo, che a livello di adozione su scala
 nazionale ed europea, con conseguente diffusione sul mercato di prodotti e soluzioni con essi
 compatibili.

Quest'introduzione è completata infine da una vista specifica dell'**architettura di bordo**, che fornisce una prima presentazione ad alto livello sulle modalità con cui le componenti di bordo dovranno essere collegate tra di loro ed interagire per garantirne il funzionamento atteso. Anche in questo caso l'architettura proposta segue i più moderni standard presenti allo stato dell'arte, declinati in funzione delle specificità del sistema tariffario integrato dell'Alto Adige.

Tutte le viste sono caratterizzate anche da una chiara suddivisione delle responsabilità dei vari attori di sistema, in modo che siano immediatamente chiari e comprensibili i compiti che sono affidati agli operatori.

2.1 Architettura funzionale

In Figura 1 viene riportata la vista funzionale dell'architettura completa di sistema, descritta in modo dettagliato nei suoi componenti in Tabella 1. Le componenti di competenza dell'operatore aggiudicatario sono evidenziate in colore blu, mentre quelle controllate da STA per conto della Ripartizione Mobilità della Provincia Autonoma di Bolzano sono rappresentate in colore giallo. Le componenti in arancione sono relative al sottosistema di ticketing, la cui gestione e manutenzione è attualmente affidata ad una società esterna su incarico di STA.

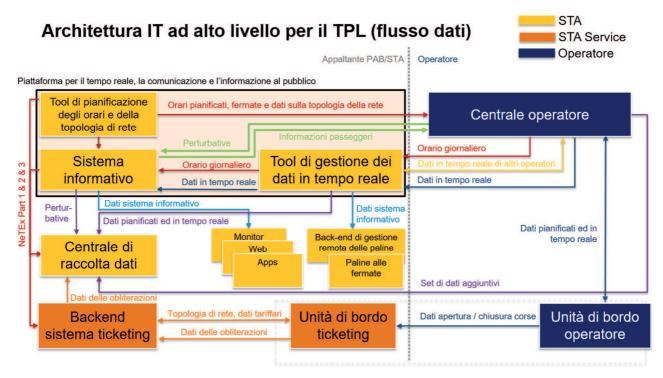


Figura 1: Vista funzionale dell'architettura di sistema.

Componente	Descrizione	
Piattaforma per il tempo	È una macrocomponente che ha il compito di supportare l'ente affidante	
reale, la comunicazione e	nei suoi compiti di pianificazione del servizio e di erogazione di servizi	
l'informazione al	informativi ai viaggiatori. E' composta dal tool di pianificazione degli orari e	
pubblico	della tipologia di rete, dal tool di gestione dei dati in tempo reale e dal	
	sistema informativo.	
Tool di pianificazione	Questo componente ha il compito di gestire tutti i dati pianificati del	
degli orari e della	trasporto pubblico locale (in particolare la topologia della rete con la	
topologia di rete	caratterizzazione delle fermate e degli archi, ed i dettagli del servizio	
	programmato con le informazioni relative alle corse pianificate). Ad oggi	
	questo compito è realizzato per mezzo di un'istanza del tool DIVA prodotto	
	dalla ditta Mentz ¹ . Il set di dati gestiti attraverso questo tool è da intendersi	
	come il "master" per l'intera architettura di sistema: esso infatti è da	
	intendersi come il riferimento unico per tutti i sistemi alimentati, soprattutto	
	per quello che riguarda i sistemi gestiti dall'operatore, attraverso i quali	
	vengono realizzate le proprie attività interne di pianificazione dei servizi.	
Centrale Operatore	Questo componente comprende tutti i sistemi di back-end che l'operatore	
	utilizza allo scopo di (i) pianificare internamente l'erogazione dei servizi di	

¹ Per maggiori informazioni sul tool, si rimanda alla pagina web https://www.mentz.net/en/vehicle-and-duty-scheduling/diva/

Componente	Descrizione		
	trasporto pubblici ad esso assegnati (pianificazione dei turni macchina e		
	dei turni guida, con loro assegnazione agli autisti) e (ii) gestire in tempo		
	reale attraverso una connessione continua con la propria flotta di mezzi in		
	servizio. Questi compiti possono essere espletati da uno o più tool: su		
	questo viene lasciata totale libertà scelta all'operatore di utilizzare la		
	soluzione tecnologica che ritiene essere più congeniale.		
Tool di gestione dei dati	La nuova architettura IT per il trasporto pubblico locale dell'Alto Adige		
in tempo reale	prevede un nuovo componente di sistema che ha essenzialmente due		
	diversi compiti: (i) raccogliere dati in tempo reale da tutti gli operatori di		
	trasporto pubblico locale (compresi quelli che operano su ferro) sui servizi		
	correntemente forniti; (ii) distribuire tali dati, opportunamente rielaborati a		
	tutti gli attori del sistema (compresi gli operatori stessi) al fine di fornire		
	un'adeguata informazione all'utenza e garantire un incremento		
	dell'efficienza del servizio complessivamente fornito attraverso la		
	possibilità di gestire in maniera flessibile le coincidenze tra corse diverse.		
	In questo contesto, gli operatori hanno essenzialmente tre compiti: (i)		
	fornire l'orario giornaliero, che rappresenta l'attualizzazione dell'orario di		
	riferimento gestito e distribuito dal tool di pianificazione degli orari e della		
	topologia di rete, arricchito con alcuni dati come ad es. l'identificativo del		
	veicolo associato ad una certa corsa; (ii) fornire i dati in tempo reale relativi		
	alla posizione dei propri mezzi; (iii) ricevere i dati in tempo reale relativi ai		
	servizi erogati dagli altri operatori del sistema in modo da poter gestire le		
	coincidenze ed espletare al meglio i compiti di informazione all'utenza a		
	bordo dei propri mezzi.		
Sistema informativo	Questo componente rappresenta il sistema di riferimento che alimenta i		
	diversi canali informativi con cui gli utenti del trasporto pubblico locale		
	possono essere informati sui servizi erogati e sul loro stato attuale. In		
	generale, questo componente è l'unico punto di distribuzione delle		
	informazioni da cui applicativi di terze parti possono collegarsi per		
	richiedere i dati da mostrare agli utenti: l'unica eccezione è legata al		
	sistema delle paline alle fermate, che viene alimentato grazie alla		
	presenza di protocolli dati ad-hoc dal tool di gestione dei dati in tempo		
	reale. Oltre a rendere disponibili in forma semplificata tali informazioni		
	rielaborate secondo licenze aperte che verranno definite, questo		
	componente offre funzionalità aggiuntive in grado di semplificare le		
	operazioni di pianificazione di uno spostamento, come ad es. funzionalità		
	di routing / journey planning per la raccomandazione di diverse opzioni di		
	viaggio per muoversi in un certo momento della giornata da un punto		
	all'altro in Alto Adige. Un'altra funzionalità gestita da questo componente		
	riguarda il calcolo della tariffa per un certo percorso. Ad oggi questo		
	compito è realizzato per mezzo di un'istanza del tool EFA (<i>Elektronische</i>		
	Fahrplanauskunft) prodotto dalla ditta Mentz², dotato anche di un modulo		
	ICS (<i>Incident Capturing System</i>) per la gestione di perturbative al servizio.		
	La trasmissione di queste notifiche (manualmente o attraverso SIRI SX) al		
	sistema dell'ente affidante è responsabilità dell'impresa affidataria.		

² Per maggiori informazioni sul tool, si rimanda alla pagina web https://www.mentz.net/verkehrsauskunft/efa/

Componente	Descrizione		
Monitor, Web, Apps	In questo blocco vengono rappresentati alcuni dei possibili canali digitali		
	attraverso i quali gli utenti possono visualizzare le informazioni pianificate		
	ed in tempo reale del sistema di trasporto pubblico locale. Si prevede in		
	futuro la coesistenza tra canali informativi "ufficiali", gestiti da STA per		
	conto della Provincia Autonoma di Bolzano, ed applicazioni di terze parti.		
	In questo modo sarà possibile raggiungere in maniera estremamente più		
	efficace i diversi gruppi target amplificando la visibilità di queste		
	informazioni e più in generale dell'offerta di trasporto pubblico		
	complessivamente proposta.		
Back-end di gestione	Questo componente ha il compito di gestire tutta l'informazione digitale alle		
remota delle paline e	fermate. Esso è composto dalle paline alle fermate e da un sistema di		
paline alle fermate	back-end da cui ricevono in forma semplificata le informazioni da		
Passas and solution	visualizzare. In particolare il sistema di back-end ha il compito di		
	rielaborare i dati ricevuti dal tool di gestione dei dati in tempo reale		
	rendendoli presentabili per le esigenze di visualizzazione alle fermate.		
	Questi componenti di sistema sono completamente gestiti da STA per		
	conto della Provincia Autonoma di Bolzano; l'operatore non è coinvolto		
	nella loro gestione.		
Unità di bordo operatore	Questo componente si trova a bordo di tutti i mezzi pubblici dell'operatore		
omia ai porae operatore	ed ha essenzialmente due compiti: (i) gestire tutti gli apparati di bordo del		
	mezzo (esclusi quelli del sottosistema di ticketing); (ii) trasmettere in tempo		
	reale alla centrale operatore tutti i dati utili per il monitoraggio del servizio.		
Unità di bordo ticketing	Questo componente si trova a bordo di tutti i mezzi pubblici dell'operatore		
Office di Bordo (icketing			
	ed ha essenzialmente due compiti: (i) gestire il funzionamento degli		
	obliteratori e delle emettitrici di titoli di viaggio presenti a bordo raccogliendone i record di tutte le obliterazioni ed emissioni di ticket		
	effettuate; (ii) trasmettere al sistema di back-end del sistema di ticketing i		
	dati di tutte le obliterazioni e le vendite di biglietti registrate. Il		
	funzionamento di questo componente è pilotato dall'unità di bordo		
	operatore secondo un protocollo documentato.		
Backend sistema di	Questo componente ha il compito di gestire centralmente tutte le		
	·		
ticketing	funzionalità del sistema tariffario integrato in uso ad oggi in Alto Adige.		
	Nella vista dell'architettura qui riportata, vengono messe in evidenza due importanti funzionalità: (i) la raccolta dei record delle obliterazioni dalle		
	unità di bordo ticketing, necessarie per il calcolo degli importi associati ad		
	ogni singolo viaggio di ogni singolo utente, e la raccolta dei titoli di viaggio		
	che sono stati emessi; (ii) la fornitura dei dati tariffari elaborati alla centrale		
	di raccolta dati, affinché essi possano essere utilizzati per molteplici scopi,		
	in primo luogo per valutare la rispondenza tra domanda ed offerta del		
	sistema così da identificare potenzialità di miglioramento dell'offerta		
	·		
Centrale di raccolta dati	proposta. La nuova architettura IT per il trasporto pubblico locale dell'Alto Adige		
Centrale di raccolta dati			
	prevede infine l'introduzione di un nuovo componente di sistema, che ha		
	un compito cruciale: quello di storicizzare tutti i dati più rilevanti del sistema		
	di trasporto pubblico affinché essi possano essere utilizzati e correlati per		
	analisi a posteriori più o meno complesse, la più importante delle quali		
	riguarda il monitoraggio dei servizi forniti dall'operatore in funzione degli		

Componente	Descrizione
	indicatori quantitativi previsti nel capitolato di gara. Questa centrale è
	alimentata da numerosi componenti di sistema: il tool di pianificazione
	degli orari e della topologia di rete, così da poter disporre dei dati pianificati
	di riferimento; il tool di gestione dei dati in tempo reale, così da mantenere
	uno storico dei servizi realmente erogati; ed il backend sistema di ticketing,
	per avere una corrispondenza con la domanda effettiva osservata. Per
	completare questo quadro si prevede infine un ulteriore flusso dati
	direttamente dalla centrale operatori, in modo da poter disporre, a
	posteriori, di ulteriori set di dati utili per questi scopi come ad esempio la
	caratterizzazione del parco veicolare circolante o dati aggiuntivi disponibili
	a livello di bordo come il numero di passeggeri presenti sui mezzi.

Tabella 1: Descrizione funzionale delle componenti dell'architettura.

2.2 Architettura a livello di interfacce dati

A livello di interfacce dati, l'architettura si basa su un massiccio utilizzo dei più moderni standard europei presenti allo stato dell'arte.

2.2.1 Interfacce di riferimento sul medio periodo

In Figura 2 viene riportata l'architettura complete di sistema rispetto ai protocolli di interscambio dati. I dettagli delle interfacce sono illustrate in Tabella 2.

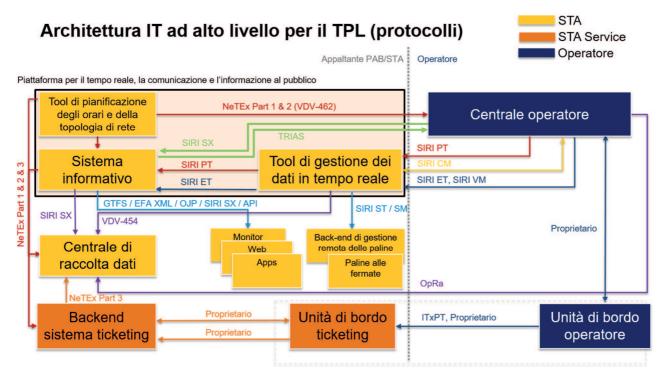


Figura 2: Architettura di sistema con vista rispetto ai protocolli di interscambio dati.

Componente A	Componente B	Descrizione
Tool di	Centrale Operatore	I dati topologici della rete del trasporto pubblico e gli orari dei
pianificazione		servizi programmati vengono resi disponibili attraverso lo
degli orari e della		standard NeTEx nelle sue parti 1-2, più precisamente
topologia di rete		attraverso il profilo tedesco dello standard (VDV-462) nella
		sua versione "ITCS-L3". Il dataset include in particolare

Componente A	Componente B	Descrizione	
		l'anagrafica delle fermate (comprese le aree ed i punti di	
		fermata), gli archi, i percorsi, le linee, i tempi di percorrenza	
		dei percorsi, i calendari, le corse e le coincidenze. Le	
		informazioni sono disponibili laddove previsto dallo standard	
		in molteplici lingue: italiano, tedesco e ladino. La	
		trasmissione, basata inizialmente su file di export ed in futuro	
		possibilmente anche via web-services, è strutturata con un	
		invio iniziale (nuovi orari annuali) e invii periodici giornalieri,	
		che includono tutte le modifiche pianificate a questa	
		programmazione di riferimento.	
Tool di	Backend sistema	Il back-end del sistema di ticketing viene alimentato non solo	
pianificazione	di ticketing	dal set di dati topologici della rete del trasporto pubblico e	
degli orari e della		degli orari dei servizi programmati via protocollo NeTEx parti	
topologia di rete		1-2 (VDV-462), ma anche con altre informazioni di base	
		necessarie per la corretta calibrazione del sistema tariffario,	
		come ad esempio le distanze tra due zone tariffarie. Questi	
		dati aggiuntivi sono trasmessi attraverso il protocollo NeTEx	
		parte 3 (Fare Frame). Questi dati sono di competenza di	
		STA.	
Tool di	Sistema	Il sistema informativo è alimentato dal tool di pianificazione	
pianificazione	informativo	degli orari e della topologia di rete attraverso un processo	
degli orari e della		automatico.	
topologia di rete			
Centrale	Unità di bordo	Il sottosistema della centrale operatore che gestisce la flotta	
Operatore	operatore	dei mezzi in tempo reale trasmette i dati pianificati arricchiti	
		alle unità di bordo operatore installate sui propri mezzi con un	
		protocollo proprietario. Ciò che è importante è garantire il	
		continuo aggiornamento della base dati a bordo dei mezzi,	
		con almeno la stessa frequenza con cui dati pianificati sono	
		trasmessi dal tool di pianificazione degli orari e della	
		topologia di rete, in modo da garantire il corretto	
		funzionamento del sottosistema di ticketing ed evitare	
		inconsistenze rispetto all'invio dei dati in tempo reale. In	
		prospettiva si valuterà la possibilità di rendere l'interfaccia	
		compatibile con la specifica S04 ITxPT [5], secondo quanto	
		previsto nel processo di innovazione tra ente affidante ed	
		impresa affidataria.	
Unità di bordo	Centrale Operatore	Il sottosistema della centrale operatore che gestisce la flotta	
operatore		dei mezzi in tempo reale riceve dalle unità di bordo operatore	
		installate sui propri mezzi la posizione in tempo reale dei	
		mezzi con un protocollo proprietario. Le unità di bordo	
		devono anche trasmettere, in tempo reale o a fine corsa,	
		anche il set di dati aggiuntivi da trasmettere successivamente	
		alla centrale di raccolta dati come il numero di passeggeri	
		presenti a bordo. Anche in questo caso si valuterà in	
		prospettiva la possibilità di rendere l'interfaccia compatibile	
		con la specifica S04 ITxPT, secondo quanto previsto nel	

Componente A	Componente B	Descrizione		
		processo di innovazione tra ente affidante ed impresa		
		affidataria.		
Centrale	Tool di gestione	Il sottosistema della centrale operatore che gestisce la flotta		
Operatore	dei dati in tempo	dei mezzi in tempo reale trasmette al tool di gestione dei dati		
'	reale	in tempo reale (i) l'orario giornaliero pianificato, che include		
		eventuali modifiche all'orario annuale come illustrato nel		
		capitolo successivo e (ii) l'orario giornaliero attualizzato,		
		comprensivo di informazioni in tempo reale sulla posizione		
		dei mezzi della flotta. Tali set di dati sono trasmessi		
		rispettivamente attraverso i protocolli SIRI PT, SIRI ET e SIRI		
		VM.		
Centrale	Sistema	La centrale operatore trasmette notifiche di perturbative di		
Operatore	informativo	servizio al sistema informativo. Le perturbative sono		
Operatore	Illomativo	·		
Table markings	Olata and	trasmesse con il protocollo SIRI SX.		
Tool di gestione	Sistema	Il tool di gestione dei dati in tempo reale inoltra le informazioni		
dei dati in tempo	informativo	ricevute dalle centrali operatori, aggregate tra loro, al sistema		
reale		informativo utilizzando i medesimi protocolli SIRI PT e SIRI		
—	D	ET.		
Tool di gestione	Back-end di	Il tool di gestione dei dati in tempo reale alimenta il back-end		
dei dati in tempo	gestione remota	di gestione remota delle paline inviando i set di dati trasmessi		
reale	delle paline e	dalle centrali operatori, opportunamente convertiti, attraverso		
	paline alle fermate	i protocolli SIRI ST e SM. Nello specifico tali protocolli sono		
		usati per inviare i passaggi pianificati e attuali alle fermate		
		delle singole corse, rispettivamente.		
		Il back-end di gestione remota delle paline rielabora questi		
		dati e li invia alle paline alle fermate usando un'interfaccia		
		proprietaria.		
Sistema	Monitor, Web,	Il sistema informativo mette a disposizione di terze parti		
informativo	Apps	informazioni pianificate ed in tempo reale sui servizi di		
		trasporto erogati.		
		Tali informazioni sono esposte attraverso interfacce standard		
		come OJP, EFA-XML, GTFS e SIRI SX (per le informazioni		
		sui disservizi) ed eventualmente attraverso un API ad-hoc.		
		Saranno messi a disposizione di terze parti anche dei widget		
		così da facilitarne l'integrazione in applicazioni web esistenti.		
Tool di gestione	Centrale Operatore	Il sottosistema della centrale operatore che gestisce la flotta		
dei dati in tempo		dei mezzi in tempo reale non invia solo dati al tool di gestione		
reale		dei dati in tempo reale. La centrale operatori può anche		
Touis		chiedere dati di altri operatori. In particolare è prevista la		
		gestione delle coincidenze. In questo caso richieste di		
		coincidenze garantite da parte di altri operatori sono inoltrate		
		per mezzo del tool di gestione dei dati in tempo reale.		
		L'operatore può confermare o non garantire la coincidenza a		
		valle di un confronto con l'autista del mezzo coinvolto dalla		
		richiesta. Le interazioni tra il tool di gestione dei dati in tempo		
		reale e la centrale operatore avvengono attraverso il		
		protocollo SIRI CM.		

Componente A	Componente B	Descrizione		
Sistema	Centrale Operatore			
informativo		informazioni utili per pilotare il proprio sistema di informazio		
		ai passeggeri, incluso il sistema di informazione a bordo dei		
		veicoli della propria flotta. Tali informazioni sono disponibili		
		attraverso l'interfaccia TRIAS, descritta nella specifica VDV-		
		431 (parti 1 e 2) [6]- [7].		
Tool di gestione	Centrale di	Il tool di gestione dei dati in tempo reale trasmette alla		
dei dati in tempo	raccolta dati	centrale di raccolta dati il set completo dei dati relativi alle		
reale		corse giornaliere pianificate ed effettuate in conformità con la		
		specifica VDV-454 ("Komplettfahrtmeldung mit RealZeit").		
		Questa specifica si applica sull'ultima trasmissione effettuata		
		da parte dell'impresa affidataria.		
Tool di	Centrale di	Il tool di pianificazione degli orari e della topologia di rete		
pianificazione	raccolta dati	trasmette alla centrale di raccolta dati il set completo relativo		
degli orari e della		alla pianificazione dei servizi, inclusi i dati tariffari gestiti a		
topologia di rete		sistema. La trasmissione avviene per mezzo del protocollo		
		NeTEx parti 1-2 (VDV-462) per la parte di topologia di rete ed		
		orari annuali, e NeTEx parte 3 (Fare Frame) per la parte dei		
		dati relativi al sistema tariffario. Questo set di dati viene		
		utilizzato principalmente per finalità di confronto con i dati		
		consuntivi forniti dal tool di gestione dei dati in tempo reale e		
		dal back-end del sistema tariffario.		
Sistema Centrale di II sistema informati		Il sistema informativo trasmette alla centrale di raccolta dati		
		l'elenco delle notifiche sulle perturbative al servizio, così da		
		considerare opportunamente queste informazioni durante il		
		confronto pianificato / consuntivo.		
Unità di bordo	Unità di bordo	A bordo dei mezzi è prevista un'interazione automatica tra		
operatore	ticketing	l'unità di bordo gestita dall'operatore e l'unità di bordo del		
		sottosistema di ticketing. Nello specifico, l'unità di bordo del		
		sottosistema di ticketing riceve dall'unità di bordo gestita		
		dall'operatore un set di dati utili per il suo corretto		
		funzionamento. Tale interazione avviene attraverso un		
		protocollo proprietario che l'operatore dovrà essere in grado		
		di implementare. Le specifiche di questo protocollo sono		
		incluse nella documentazione di gara.		
Unità di bordo	Backend sistema	Le obliterazioni registrate a bordo dei mezzi sono raccolte e		
ticketing	di ticketing	trasmesse dall'unità di bordo ticketing al back-end		
		corrispondente al completamento di ciascuna corsa. La		
		trasmissione avviene attraverso protocolli proprietari		
		implementati da fornitore del sottosistema di ticketing.		
Backend sistema	Centrale di	Il backend del sistema di ticketing trasmette regolarmente alla		
di ticketing	raccolta dati	centrale di raccolta dati il consuntivo in forma anonima del		
		sistema tariffario. La trasmissione di questi dati avviene		
		usando il protocollo standard NeTEx parte 3 (Sales		
		Transaction Frame).		
Centrale	Centrale di	Questo flusso dati gestisce la trasmissione periodica di set di		
Operatore	raccolta dati	dati aggiuntivi in possesso dell'operatore e che sono utili per		

Componente A	Componente B	Descrizione
		la caratterizzazione e la valutazione a posteriori dei servizi
		eserciti, anche al fine di verificare il rispetto degli indicatori di
		qualità. A regime questo flusso dati sarà implementato per
		mezzo del protocollo OpRa.

Tabella 2: Descrizione delle interfacce usate nell'architettura di sistema.

2.2.2 Interfacce transitorie per il breve periodo

La medesima vista del paragrafo precedente viene proposta anche in Figura 3, ma mettendo in evidenza i protocolli di interscambio dati aggiuntivi che potranno essere accettati durante la prima fase di implementazione, in attesa di implementare completamente i protocolli precedentemente indicati. Il dettaglio delle tempistiche con cui questa transizione verrà gestita è documentato in Tabella 3.

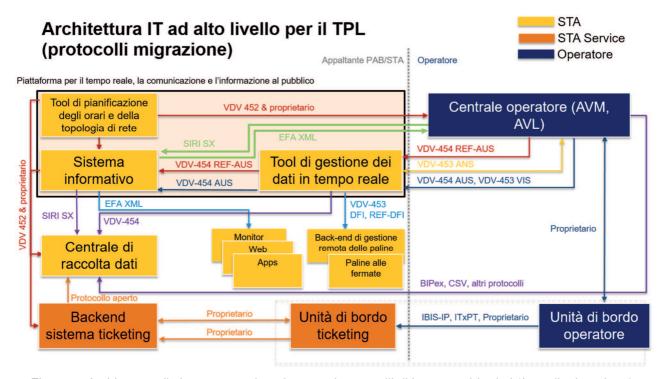


Figura 3: Architettura di sistema con vista rispetto ai protocolli di interscambio dati (fase di migrazione).

Componente A	Componente B	Descrizione	Tempistiche migrazione
Tool di	Centrale	I dati topologici della rete del	Questo export sarà disponibile
pianificazione	Operatore	trasporto pubblico e gli orari dei	fino a 2 anni dopo l'avvio della
degli orari e		servizi programmati vengono	messa in produzione
della topologia		resi disponibili inizialmente	dell'architettura.
di rete		anche attraverso lo standard	
		tedesco VDV-452. Il dataset	
		include in particolare l'anagrafica	
		delle fermate (con il dettaglio dei	
		punti di fermata), gli archi, i	
		percorsi, le linee, i tempi di	
		percorrenza dei percorsi, i	
		calendari, le corse e le	
		coincidenze. Le informazioni	

Componente A	Componente B	Descrizione	Tempistiche migrazione
'	'	sono disponibili in italiano: le	
		traduzioni in tedesco e ladino	
		saranno disponibili attraverso	
		opportuni file aggiuntivi di	
		mapping. La trasmissione è	
		basata unicamente su file di	
		export ed è strutturata con un	
		invio iniziale (nuovi orari annuali)	
		e invii periodici giornalieri, che	
		includono tutte le modifiche	
		pianificate a questa	
		programmazione di riferimento.	
Tool di	Backend	-	I dati verranno fin da subito
pianificazione	sistema di		forniti attraverso il protocollo
degli orari e	ticketing		NeTEx, parte 3 (<i>Fare Frame</i>)
della topologia	tionoting		(rare rrame)
di rete			
Tool di	Sistema	-	Il sistema informativo è
pianificazione	informativo		alimentato fin da subito dal
degli orari e			tool di pianificazione degli orari
della topologia			e della topologia di rete
di rete			attraverso un processo
			automatico.
Centrale	Unità di bordo	-	La trasmissione dei dati dai
Operatore	operatore		mezzi alle centrali operatori
Unità di bordo	Centrale	-	avverrà fin da subito con
operatore	Operatore		soluzioni tecniche scelte
			dall'operatore, anche
			proprietarie.
Centrale	Tool di gestione	L'orario giornaliero pianificato e	
Operatore	dei dati in tempo	attualizzato verrà fornito in una	
	reale	fase iniziale attraverso il	
		protocollo VDV-454 (servizio	
		AUS e REF-AUS). Nota: VDV-	
		454 compreso di	
		"Komplettfahrtmeldung mit	Questa modalità di
		RealZeit'.	trasmissione sarà disponibile
Tool di gestione	Sistema	Anche la comunicazione tra	fino a 3 anni dopo l'avvio della
dei dati in tempo	informativo	questi due componenti di	messa in produzione
reale		sistema sarà gestita inizialmente	dell'architettura.
		con il protocollo VDV-454	
		(servizio AUS und REF-AUS).	
Tool di gestione	Back-end di	I passaggi pianificati e attuali	
dei dati in tempo	gestione remota	alle fermate delle singole corse	
reale	delle paline e	saranno trasmessi inizialmente	
	paline alle	al back-end di gestione remota	
	fermate	delle paline anche attraverso il	

Componente A	Componente B	Descrizione	Tempistiche migrazione
•	-	protocollo VDV-453 (servizi DFI	
		e Ref-DFI).	
Sistema	Monitor, Web,	I dati messi a disposizione di	La messa a disposizione dei
informativo	Apps	applicativi terzi saranno esposti	servizi OJP verrà completata
	''	inizialmente dal sistema	entro 3 anni dopo l'avvio della
		informativo nel formato EFA	messa in produzione
		XML ed eventualmente	dell'architettura. Le altre
		attraverso un API ad-hoc. I	interfacce previste saranno
		widget saranno disponibili in una	introdotte gradualmente.
		prima versione fin dall'inizio	
		delle attività di implementazione.	
Sistema	Centrale	Anche i sistemi della centrale	L'interfaccia TRIAS sarà
informativo	Operatore	operatore saranno alimentati,	implementata entro 2 anni
		per quello che riguarda	dopo la messa in produzione
		l'informazione ai passeggeri, dal	dell'architettura.
		servizio EFA XML attualmente	
		disponibile.	
Centrale	Sistema	-	Le notifiche relative a
Operatore	informativo		perturbative di servizio
Sistema	Centrale di	-	saranno da subito gestite con
informativo	raccolta dati		il protocollo SIRI SX.
Tool di gestione	Centrale	La gestione delle coincidenze	Questa modalità di
dei dati in tempo	Operatore	verrà effettuata inizialmente	trasmissione sarà disponibile
reale		attraverso il protocollo VDV-453,	fino a 3 anni dopo l'avvio della
		servizio ANS con canale di	messa in produzione
		ritorno.	dell'architettura.
Tool di gestione	Centrale di		La specifica VDV-454
dei dati in tempo	raccolta dati		("Komplettfahrtmeldung mit
reale			RealZeit") verrà supportata fin
			dall'inizio delle operazioni.
Tool di	Centrale di	-	I dati verranno fin da subito
pianificazione	raccolta dati		forniti attraverso il protocollo
degli orari e			NeTEx, parti 1-2-3.
della topologia			
di rete			
Unità di bordo	Unità di bordo	-	Il protocollo proprietario fornito
operatore	ticketing		nella documentazione di gara
			sarà utilizzato fin da subito.
Unità di bordo	Backend	-	La trasmissione remota delle
ticketing	sistema di		obliterazioni registrate a bordo
	ticketing		avverranno fin da subito
			attraverso protocolli proprietari
			implementati da fornitore del
			sottosistema di ticketing

Componente A	Componente B	Descrizione	Tempistiche migrazione	
Backend	Centrale di	-	I dati verranno fin da subito	
sistema di	raccolta dati		forniti attraverso il protocollo	
ticketing			NeTEx, parte 3 (Sales	
			Transaction Frame)	
Centrale	Centrale di	In attesa che il protocollo OpRa	Questa modalità di	
Operatore	raccolta dati	venga definito in dettaglio, la	trasmissione sarà mantenuta	
		trasmissione dei dati aggiuntivi	indicativamente fino a 5 anni	
		potrà avvenire o attraverso il	dopo l'avvio della messa in	
		protocollo BIPex (parte Servizio	produzione dell'architettura.	
		Esercito) oppure attraverso	L'introduzione del protocollo	
		semplici export in formato .csv o	OpRa verrà valutata	
		interfacce <i>custom</i> da definire	attentamente in funzione degli	
		congiuntamente nella loro	sviluppi del comitato di	
		struttura in fase di avvio delle	standardizzazione che ne sta	
		attività di integrazione.	curando la definizione.	

Tabella 3: Descrizione delle interfacce usate nell'architettura di sistema (fase di migrazione).

2.3 Architettura di bordo

2.3.1 Architettura per il medio e lungo periodo

La vista dell'architettura di bordo per il medio e lungo periodo, da applicare su tutti i nuovi veicoli immessi in linea dopo l'avvio del servizio, è riportata in Figura 4. Tutti i nuovi autobus che verranno messi in servizio dovranno garantire la piena compatibilità con quest'architettura, ad eccezione dei mezzi classe A da max. 9 posti. La caratteristica fondamentale riguarda la scelta di prevedere una rete IP a bordo, secondo le specifiche e le linee guida ITxPT [8]- [9]- [10]. In Tabella 4 vengono elencate in forma sintetica le funzionalità attese di ciascun componente, distinti per componenti obbligatori ed opzionali.

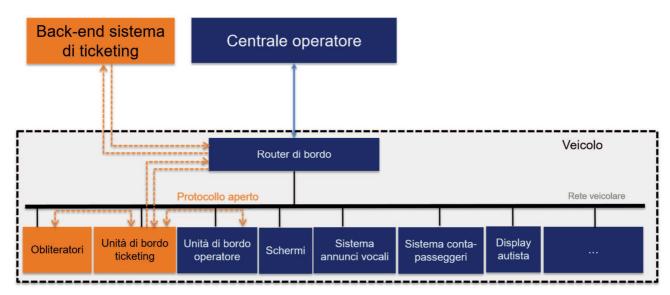


Figura 4: Architettura di bordo per il medio / lungo periodo.

Componente	Descrizione	Vincolante [V] / Opzionale [O]
Router di bordo	Il router di bordo ha il compito di gestire tutta la comunicazione dati con la centrale operatore e il back-end	V

Componente	Descrizione	Vincolante [V] / Opzionale [O]
	del sistema di ticketing, compreso quindi tutto il flusso dati	
	tra l'unità di bordo ticketing ed il sottosistema di ticketing.	
Display autista	Il display autista è da intendersi come un'interfaccia uomo-	V
. ,	macchina, che consente all'autista di interagire con	
	entrambe le unità di bordo e gestire le diverse operazioni	
	previste (es. avvio / chiusura di una corsa).	
Unità di bordo	L'unità di bordo operatore è l'unità centrale dell'architettura	V
operatore	di bordo, a cui sono affidati i compiti di gestire lo scambio di	
	informazioni con (i) il segmento di terra attraverso il router di	
	bordo; (ii) gli altri componenti di sistema controllati	
	dall'operatore collegati attraverso la rete IP veicolare. Può	
	essere fisicamente integrata con il display autista.	
Unità di bordo	L'unità di bordo ticketing è la componente di bordo che	V
ticketing	gestisce il funzionamento del sottosistema tariffario a bordo.	
	Le funzionalità gestite sono essenzialmente due: (i)	
	gestione degli obliteratori e registrazione delle obliterazioni;	
	(ii) emissione di titoli di viaggio a bordo. L'unità di bordo	
	ticketing gestisce naturalmente anche la comunicazione con	
	il back-end attraverso il router di bordo, condividendo	
	informazioni quali l'elenco dei titoli di viaggio validi / non	
	validi.	
Console di vendita	La console di vendita dei titoli di viaggio è un dispositivo	0
dei titoli di viaggio	connesso direttamente via cavo all'unità di bordo ticketing	
	che ha la funzione di predisporre e stampare i titoli di	
	viaggio per la vendita a bordo. Alternativamente c'è la	
	possibilità di installare un'app sul display autista (con	
Oblitanatani	sistema operativo Android).	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Obliteratori	Gli obliteratori sono apparati controllati dall'unità di bordo	V
	ticketing che hanno il compito di validare i vari titoli di	
Schermi laterali e	viaggio previsti nel sistema tariffario dell'Alto Adige Gli schermi laterali e frontali hanno lo scopo di visualizzare	V
frontali	la linea servita dal mezzo ad un utente esterno che lo	V
liontali	osserva.	
Schermi interni	Gli schermi interni hanno la funzione di presentare	V
	informazioni di viaggio rilevanti ai passeggeri (es.	V
	informazioni sulla corsa, presenza di coincidenze) e altri	
	contenuti digitali di info-tainment per scopi pubblicitari. La	
	visualizzazione di questi contenuti avviene secondo layout e	
	modalità definite da STA. Il contenuto informativo	
	presentato sugli schermi interni avviene per mezzo della	
	rete IP di bordo operatore e della piattaforma per il tempo	
	reale, la comunicazione e l'informazione al pubblico di STA.	
Sistema annunci	A bordo è presente anche un sistema di annunci vocali, che	V
vocali	fornisce ai passeggeri informazioni di viaggio rilevanti (es.	
	prossima fermata) in modalità audio. Gli annunci vocali	
	sono forniti da STA.	

Componente	Descrizione	Vincolante [V] / Opzionale [O]
Sistema conta- passeggeri	Sono previsti a bordo anche sistemi contapasseggeri per il conteggio del numero di passeggeri a bordo. All'operatore viene data la facoltà di scegliere la soluzione tecnica ritenuta migliore dal punto di vista del compromesso costi / prestazioni.	V: per almeno il 30% dei veicoli (per tipo di veicolo e rispetto all'intera flotta)
Sistema di videosorveglianza	A bordo può essere previsto opzionalmente un sistema di videosorveglianza, che può operare in modalità completamente offline oppure prevedere una comunicazione con un sistema di back-end attraverso il router di bordo. In questo secondo caso, l'operatore deve garantire disponibilità di banda sufficiente per la comunicazione con il segmento di terra richiesto dai vari componenti di bordo.	0
Telefono aziendale	L'operatore deve garantire la possibilità di creare un collegamento audio tra la sua sala operativa e l'autista in qualsiasi momento durante l'esecuzione del servizio.	V
Componenti future	In generale l'architettura di bordo deve essere tale da poter collegare in futuro alla rete IP nuove componenti in grado di espletare nuove funzionalità.	0

Tabella 4: Descrizione funzionale delle componenti di bordo veicolo.

2.3.2 Architettura per il breve periodo

Al fine di garantire il corretto funzionamento dell'attuale sottosistema di ticketing senza interruzione di continuità si propone per il breve periodo un'architettura di transizione sostanzialmente identica a quella illustrata ma che differisce per la presenza di un secondo router, specifico per la comunicazione dati tra l'unità di bordo ed il back-end del sottosistema di ticketing, così come illustrato in Figura 5. Tale architettura transitoria verrà utilizzata per un periodo indicativo di 3 anni dopo l'avvio della messa in produzione dell'architettura.

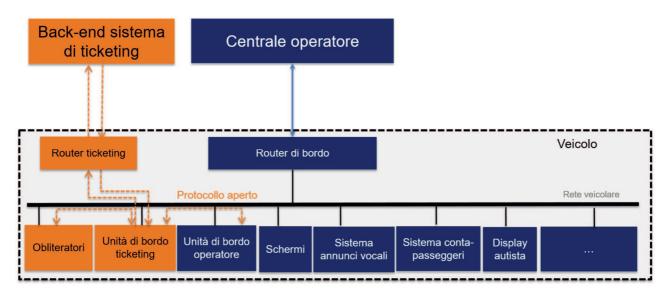


Figura 5: Architettura di bordo per il breve periodo.

Bibliografia

- [1] European Committee for Standardization (CEN), «Transmodel V6.0 Definitions of concepts for parts 1-2-3.» 2014.
- [2] VDV Die Verkehrsunternehmen, «VDV-462: "Standardisierter Austausch von Liniennetz-und Fahrplandaten mit der europäischen Norm CEN-TS 16441 'NeTEx'",» 2018.
- [3] European Committee for Standardization (CEN), «CEN/TS 16614-1: 2014 "Public transport Network and Timetable Exchange (NeTEx) Part 1: Public transport network topology exchange format",» 2014.
- [4] European Committee for Standardization (CEN), «CEN/TS 16614-2: 2014 "Public transport Network and Timetable Exchange (NeTEx) Part 2: Public transport scheduled timetables exchange format",» 2014.
- [5] ITxPT (Information Technology for Public Transport), «S04 Over the Air (OtA) Architecture specifications (release S04v2.0_2017),» 2017.
- [6] VDV Die Verkehrsunternehmen, «VDV-431: "Echtzeit Kommunikations- und Auskunftsplattform EKAP" (Teil 1: Systemarchitektur),» 2014.
- [7] VDV Die Verkehrsunternehmen, «VDV-431: "Echtzeit Kommunikations- und Auskunftsplattform EKAP" (Teil 2: EKAP-Schnittstellenbeschreibung V1.2),» 2017.
- [8] ITxPT (Information Technology for Public Transport), «S01 Vehicle Installation Requirements Specifications (release S01v2.0_2017),» 2017.
- [9] ITxPT (Information Technology for Public Transport), «S02 Onboard Archtiecture specification (release S02v2.0_2017),» 2017.
- [10] ITxPT (Information Technology for Public Transport), «S03 Back-Office Archtiecture specifications (release S03v2.0 2017),» 2017.